Home
Class 10
MATHS
sin^(4)A+cos^(4)A=1-2sin^(2)A*cos^(2)A...

sin^(4)A+cos^(4)A=1-2sin^(2)A*cos^(2)A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: sin^(4)A-cos^(4)A=sin^(2)A-cos^(2)A=2sin^(2)A-1=1-2cos^(2)A

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

cos^(4)A-sin^(4)A=2cos^(2)A-1

cos^(4)A-sin^(4)A=2cos^(2)A-1

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

Prove the following cos^(4)A-sin^(4)A+1=2cos^(2)A

sin^4A-cos^4A=2sin^2A-1=1-2cos^2A=sin^2A-cos^2A

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

Prove that sec^(2)A-((sin^(2)A-2sin^(4)A)/(2cos^(4)A-cos^(2)A))=1

What is ( cos ^(4) A - sin ^(4) A)/( cos ^(2) A - sin ^(2) A) equal to ?