Home
Class 11
MATHS
" If "[x]" is the greatest integer funct...

" If "[x]" is the greatest integer function and "K=Lt_(2^(+))(([x]^(3))/(3)-[(x)/(3)]^(3))" then the value "3k=

Promotional Banner

Similar Questions

Explore conceptually related problems

If [x] is the greatest integer function, then underset (x to 2^+)lim ([x]^3/3-[x/3]^3)=

If [.] denotes the greatest integer functon, then Lt_(n to oo)([1^(3)x]+[2^(3)x]+....+..[n^(3)x])/(n^(4))

If [x+[2x]] lt3 , where [.] denotes the greatest integer function, then x is

If [.] denotes the greatest integer function then the number of points where f(x)=[x]+[x+(1)/(3)]+[x+(2)/(3)] is Discontinuous for x in(0,3) are

f(x)=[2x]sin3pixa n df^(prime)(k^(prime))=lambdakpi(-1)^k (where [.] denotes the greatest integer function and k in N), then find the value of lambda .

If x^(2)+3x+5 is the greatest common divisor of (x^(3)+ax^(2)+bx+1) and (2x^(3)+7x^(2)+13x+5) then find the value of [a+b]. [Note : [k] denotes greatest integer less than or equal to k.]