Home
Class 10
MATHS
mx-ny=m^(2)+n^(2);quad x+y=...

mx-ny=m^(2)+n^(2);quad x+y=

Promotional Banner

Similar Questions

Explore conceptually related problems

solve the following pair using cross multiplication method mx+ny=m^(2)+n^(2) and x+y=2m

Solve for x and y : mx- ny = m^(2) + n^(2) " " x - y = 2n

3mx^(2)-8n^(2)y+(-4mx^(2))-n^(2)y=

Prove : int sin mx sin n x dx[ m^(2) != n^(2)] , = 1/2 [ (sin(m-n)x)/(m-n) - (sin (m+n)x)/(m+n) ] + c

Select a suitable identity and find the following products (mx^(2) + ny^(2))(mx^(2) + ny^(2))

If sin ^(2) mx + cos ^(2) ny = a ^(2) then (dy)/(dx) =

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

if sin^(2)mx+cos^(2)ny=a^(2) then (dy)/(dx)

y=ae^(mx)+be^(-mx),(d^(2)y)/(dx^(2))=m^(2) yisequal rarr m^(2)(ae^(mx)-be^(mx))