Home
Class 12
MATHS
If the chord of contact of tangents from...

If the chord of contact of tangents from a point `(x_1, y_1)` to the circle `x^2 + y^2 = a^2` touches the circle `(x-a)^2 + y^2 = a^2`, then the locus of `(x_1, y_1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the chord of contact of tangents from a point P (x_1,y_1) to the circle x^2+y^2=a^2 touches the circle (x-a)^2+y^2 = a^2 , then the locus of (x_1, y_1) is :

If the chord of contact of tangents from a point P(h, k) to the circle x^(2)+y^(2)=a^(2) touches the circle x^(2)+(y-a)^(2)=a^(2) , then locus of P is

If the chord of contact of tangents from a point P(h, k) to the circle x^(2)+y^(2)=a^(2) touches the circle x^(2)+(y-a)^(2)=a^(2) , then locus of P is

The point of contact of a tangent from the point (1, 2) to the circle x^2 + y^2 = 1 has the coordinates :

The point of contact of a tangent from the point (1, 2) to the circle x^2 + y^2 = 1 has the coordinates :

If the chord of contact of tangents from a point on the circle x^(2) + y^(2) = a^(2) to the circle x^(2)+ y^(2)= b^(2) touches the circle x^(2) + y^(2) = c^(2) , then a, b, c are in-

chord of contact of the tangents drawn from a point on the circle x^(2)+y^(2)=81 to the circle x^(2)+y^(2)=b^(2) touches the circle x^(2)+y^(2)=16 , then the value of b is

If chord of contact of the tangent drawn from the point (a,b) to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 touches the circle x^(2)+y^(2)=k^(2), then find the locus of the point (a,b).

Ifchord ofcontact ofthe tangents drawn from the point (alpha,beta) to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 touches the circle x^(2)+y^(2)=c^(2), then the locus of the point