Home
Class 11
MATHS
sum(k=1)^(3)cos^(2)(2k-1)(pi)/(12)=...

sum_(k=1)^(3)cos^(2)(2k-1)(pi)/(12)=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 1+sum_(k=0)^(12){(cos((2k+1)pi))/(13)+i(sin((2k+1)pi))/(13)}

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

The value of 1+sum_(k=0)^14{(cos)((2k+1)pi)/(15)+(isin)((2k+1)pi)/(15)} is

The value of sum_(K=1)^(2015)cos((2kpi)/(13))(i-tan((2k pi)/(13)) is a) -1 b) 0 c) 1 d) 2

Prove that sum_(k=1)^(n-1)(n-k)(cos(2k pi))/(n)=-(n)/(2) wheren >=3 is an integer

The value of sum_(k=1)^(13)tan((k pi)/(12))tan(((k-1)pi)/(12)) is

Find the value of sum_(k =1)^(8)(cos"" (2k pi)/(9) + i(sin""2k pi)/(9))

The value of sum_(k=1)^(10)(3k^(2)+2k-1) is

lim_(n->oo)sum_(k=1)^n((sin)pi/(2k)-(cos)pi/(2k)-(sin)(pi/(2(k+2))+(cos)pi/(2(k+2)))=