Home
Class 11
MATHS
fn(x)=e^(f(n-1)(x)) for all n in Na n ...

`f_n(x)=e^(f_(n-1)(x))` for all `n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)}` is (a)`(f_n(x)d)/(dx){f_(n-1)(x)}` (b) `f_n(x)f_(n-1)(x)` (c)`f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x)` (d)none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

a_(0)f^(n)(x)+a_(1)f^(n-1)(x)*g(x)+a_(2)f^(n-2)g^(2)(x)+......+a_(n)g^(n)(x)>=0

If f(x)=|x|+|x-1|, write the value of (d)/(dx)f(f(x))

If (d(f(x))/(dx)=(1)/(1+x^(2)) then (d)/(dx){f(x^(3))} is

If f(x)=(a-x^n)^(1/n) then find f(f(x))

f : N to N : f (x) =x^(2) + x+ 1 is

Using the first principle,prove that: (d)/(dx)(f(x)g(x))=f(x)(d)/(dx)(g(x))+g(x)(d)/(dx)(f(x))

If (x+1)+f(x-1)=2f(x)andf(0),=0 then f(n),n in N, is nf(1)(b){f(1)}^(n)(c)0 (d) none of these