Home
Class 11
MATHS
Suppose fa n dg are functions having se...

Suppose `fa n dg` are functions having second derivative `f''` and `g' '` everywhere. If `f(x)dotg(x)=1` for all `xa n df^(prime)a n dg'` are never zero, then `(f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x))e q u a l` (a)`(-2f^(prime)(x))/f` (b) `(2g^(prime)(x))/(g(x))` (c)`(-f^(prime)(x))/(f(x))` (d) `(2f^(prime)(x))/(f(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f and g are functions having second derivatives f' and g' every where,if f(x)*g(x)=1 for all x and f'',g'' are never zero then (f'(x))/(f'(x))-(g'(x))/(g'(x)) equals

Let f(x) and g(x) be two function having finite nonzero third-order derivatives f''(x) and g''(x) for all x in R. If f(x)g(x)=1 for all x in R, then prove that (f''')/(f')-(g'')/(g')=3((f'')/(f)-(g'')/(g))

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

Let f(x) and g(x) be real valued functions such that f(x)g(x)=1, AA x in R."If "f''(x) and g''(x)" exists"AA x in R and f'(x) and g'(x) are never zero, then prove that (f''(x))/(f'(x))-(g''(x))/(g'(x))=(2f'(x))/(f(x))

Let f(x) and g(x) be real valued functions such that f(x)g(x)=1, AA x in R."If "f''(x) and g''(x)" exists"AA x in R and f'(x) and g'(x) are never zero, then prove that (f''(x))/(f'(x))-(g''(x))/(g'(x))=(2f'(x))/(f(x))

Let the function f satisfies f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) foe all x and f(0)=3 The value of f(x).f^(prime)(-x)=f(-x).f^(prime)(x) for all x, is

If F(x)=f(x)dotg(x) and f^(prime)(x)dotg^(prime)(x)=c , prove that (F")/F=f^(primeprime)/f+g^(primeprime)/g+(2c)/(fg)&F^(primeprimeprime)/F=f^(primeprimeprime)/f+g^(primeprimeprime)/g

If f(x-y),f(x)f(y),a n df(x+y) are in A.P. for all x , y ,a n df(0)!=0, then (a)f(4)=f(-4) (b)f(2)+f(-2)=0 (c)f^(prime)(4)+f^(prime)(-4)=0 (d)f^(prime)(2)=f^(prime)(-2)

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l