Home
Class 12
MATHS
int(1)^(e)10^(log(e^(x)))dx=...

int_(1)^(e)10^(log_(e^(x)))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(1)^(e)(log_(e)x)^(3)dx

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int_(1)^(x)log_(e)[x]dx

int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

int_(1)^(e )x^(x)dx+ int_(1)^(e )x^(x)log x dx=

int_ (e^(e))^(e^(e^(e))) (dx)/(x ln x*ln (ln x) ln (ln (ln x)))