Home
Class 10
MATHS
(vin sin^(4)A-cos^(4)A=2sin^(2)A-1=1-2co...

(vin sin^(4)A-cos^(4)A=2sin^(2)A-1=1-2cos^(2)alpha

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: sin^(4)A-cos^(4)A=sin^(2)A-cos^(2)A=2sin^(2)A-1=1-2cos^(2)A

sin^4A-cos^4A=2sin^2A-1=1-2cos^2A=sin^2A-cos^2A

Prove the following identities: sin^4A-cos^4A=sin^2A-cos^2A=2sin^2A-1=1-2cos^2A

The simplified value of sin^(4)alpha+cos^(4)alpha+(1)/(2) sin^(2) 2 alpha is

((1)/(sec^(2)alpha-cos^(2)alpha)+(1)/(cos ec^(2)alpha-sin^(2)alpha))cos^(2)alpha*sin^(2)alpha=(1-cos^(2)alpha*sin^(2)alpha)/(2+cos^(2)alpha*sin^(2)alpha)

cos^(4)alpha+sin^(4)alpha-6sin^(2)alpha cos^(2)alpha=

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

Prove the following identities : (1 - 2 sin^(2) A)^(2)/(cos^(4) A - sin^(4) A) = 2 cos^(2) A - 1

Prove that sin^(4) alpha + cos^(4) alpha + 2 sin^(2) alpha cos^(2) alpha = 1 .

If a is any real number then :(sin^(4)alpha+sin^(2)alpha*cos^(2)alpha+cos^(2)alpha)/(sin^(2)alpha+sin^(2)alpha*cos^(2)alpha+sin^(2)alpha)=