Home
Class 11
MATHS
[x+y-z=1],[3x+y-2z=3],[x-y-z=-1]...

[x+y-z=1],[3x+y-2z=3],[x-y-z=-1]

Promotional Banner

Similar Questions

Explore conceptually related problems

2x+y-z=1 x-y+z=2 3x+y-2z=-1

Test the consistency of the system x-y+2z=1,x+y+z=3,x-3y+3z=-1,2x+4y+z Also find the solution,if any

2x+y+z=1x-y+2z=-1,3x+2y-z=4

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot

Solve : x+y+z =1, 2x+2y+2z=3, 3x+3y+3z=4

x+y+z=1 x-2y+3z=2 5x-3y+z=3