Home
Class 12
MATHS
" 11.If "e^(x)+e^(y)=e^(y+x)*" Prove tha...

" 11.If "e^(x)+e^(y)=e^(y+x)*" Prove that "(dy)/(dx)=-e^(y-x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x)+e^(y)=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0 .

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

If e^x+e^y=e^(x+y) , prove that dy/dx=-e^(y-x)

If e^x + e^y = e^(x+y) , prove that dy/dx = -e^(y-x)

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)