Home
Class 11
MATHS
Prove that p x^(q-r)+q x^(r-p)+r x^(p-q)...

Prove that `p x^(q-r)+q x^(r-p)+r x^(p-q)> p+q+r ,w h e r ep ,q ,r` are distinct and`x!=1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(p-q).x^(q-r).x^(r-p)

Solve x^(2)+x(r-q)-(p-r)(p-q)=0

The roots of the equation (q-r)x^(2)+(r-p)x+(p-q)=0

Add p(p-q),q(q-r) and r(r-p)

The roots of the equation (x-p) (x-q)=r^(2) where p,q , r are real , are

If (p)/( q - r) = (p + q)/( r) = (q)/( p) , Then find q : p : r

Prove that equations (q-r)x^(2)+(r-p)x+p-q=0 and (r-p)x^(2)+(p-q)x+q-r=0 have a common root.