Home
Class 12
MATHS
" Q."19quad lt(n rarr oo)(1)/(n)sum(r=1)...

" Q."19quad lt_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals

Lt_(ntooo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

lim_(n to oo)(1)/(2)" " sum_(r=+1)^(2n) (r)/(sqrt(n^(2)+r^(2))) equals

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

"lim_(n rarr oo)(1)/(n){sum_(r=1)^(n)e^((r)/(n))}=

Find Lt(n rarr oo) sum_(r=0)^(n-1)(1)/(sqrt(n^(2) - r^(2))

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to