Home
Class 14
MATHS
log(7)(2x-3)=...

log_(7)(2x-3)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution set of the inequality log_(7)((x-2)/(x-3))<0 is

lim_(x rarr4)(x^((7)/(2))-4^((7)/(2)))/(log_(e)(x-3))

Evaluate: lim_(x to 4)(x^(7/2)-4^(7/2))/(log_(e)(x-3))

If x satisfies log_(S)(2x+3) lt log_(s)7 , then x lies in:

Sum of all the solutions of the equation 5^((log_(5)7)^(2x))=7^((log_(7)5)^(x)) is equal to

Solve for x:(a) log_(0.3)(x^(2)+8) gt log_(0.3)(9x) , b) log_(7)( (2x-6)/(2x-1)) gt 0

Solve for x:(a) log_(0.3)(x^(2)+8) gt log_(0.3)(9x) , b) log_(7)( (2x-6)/(2x-1)) gt 0

Solve the following equations: log_(7)(2^(x)-1)+log_(7)(2^(x)-7)=1

If log_(2)(3^(2x-2)+7)=2+log_(2)(3^(x-1)+1) then x=