Home
Class 12
MATHS
2cos^(-1){(1+x)/(2)},-1<x<1...

2cos^(-1){(1+x)/(2)},-1

Promotional Banner

Similar Questions

Explore conceptually related problems

If x gt 1 then 1/2 cos^(-1) ((x^(2)-1) /(x^(2)+1)) = tan^(-1) _______.

Prove that: sin[tan^(-1)((1 - x^2)/(2x)) + cos^(-1) ((1 - x^2)/(1 + x^2))] = 1

2cos^(-1)x=cos^(-1)(2x^(2)-1)

sin[cot^(-1)((2x)/(1-x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))]=

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

tan((1)/(2) sin ^(-1)""(2x)/(1+x^(2))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2))))=(2x)/(1-x^(2))(|x|ne 1)

If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(dx) .

If y=sin^(-1)((1-x^(2))/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2))) find (dy)/(dx)