Home
Class 11
MATHS
" (ii) "sin^(2)(n+1)A-sin^(2)nA=sin(2n+1...

" (ii) "sin^(2)(n+1)A-sin^(2)nA=sin(2n+1)A sin A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)(n+1)A-sin^(2)nA=sin(2n+1)As in A

Prove that: sin^2(n+1)A-sin^2n A="sin"(2n+1)Asin A

Prove that sin^2(n+1)A-sin^2nA=sin(2n+1)AsinA

sin(2n+1)A*sin A=sin^(2)(n+1)A-sin^(2)(nA)

sin A+sin3A+...+sin(2n-1)A=(sin^(2)nA)/(sin A)

Prove that: sin(n+1)A sin(n+2)A+cos(n+1)A cos(n+2)A=cos A

Solve the equation sin^(2)ntheta - sin^(2)(n-1)theta = sin^(2)theta

Solve the equation sin^(2)ntheta - sin^(2)(n-1)theta = sin^(2)theta

" If "sin^(2)1^(0)*sin^(2)3^(0)*sin^(2)5^(0)......sin^(2)89^(0)=m^(n)." Then "|m-n|=

cos (n + 1) A cos (n + 2) A + sin (n + 1) A sin (n + 2) A =