The external centre of similitude of the circle `x^2 + y^2 -12x+8y +48 = 0` and `x^2 + y^2 - 4x + 2y - 4= 0` divides the segment joining centres in the ratio
The external centre of similitude of the circle `x^2 + y^2 -12x+8y +48 = 0` and `x^2 + y^2 - 4x + 2y - 4= 0` divides the segment joining centres in the ratio
Similar Questions
Explore conceptually related problems
The external centre of similitude of the circle x^(2)+y^(2)-12x+7y+48=0 and x^(2)+y^(2)-4x+2y-4=0 divides the segment joining centres in the ratio.
The internal centre of similitude of the circles x^(2)+y^(2)-2x+4y+4=0, x^(2)+y^(2)+4x-2y+1=0 divides the segment joining their centres in the ratio
The internal centre of similitude of the circles x^(2)+y^(2)-2x+4y+4=0, x^(2)+y^(2)+4x-2y+1=0 divides the segment joining their centres in the ratio
The internal centre of similitude of the circles x^(2)+y^(2)-2x+4y+4=0,x^(2)+y^(2)+4x-2y+1=0 divides the segment joining their centres in the ratio
Find the external centre of similitude for the circles x^(2) + y^(2) - 2x - 6y + 9 =0 and x^(2) + y^(2) = 4
The external centre of similitude of the two circles x^(2)+y^(2)-2x-6y+9=0, x^(2)+y^(2)=4 is
The external centre of similitude of the two circles x^(2)+y^(2)-2x-6y+9=0, x^(2)+y^(2)=4 is
Find the external centre of similitude for the circles x ^(2) + y ^(2) -2x - 6y + 9=0 and x^(2) + y ^(2) =4
Find the internal centre of similitude for the circles x^(2) + y^(2) + 6x - 2y + 1 =0 and x^(2) + y^(2) - 2x - 6y + 9 = 0 .
Find the internal centre of similitude for the circles x ^(2) + y ^(2) + 6x -2y + 1=0 and x^(2) + y ^(2) - 6y + 9=0