Home
Class 11
MATHS
y=tan^(-1)(sqrt(1+x^(2))-x)...

y=tan^(-1)(sqrt(1+x^(2))-x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve y=tan^(-1)((sqrt(1+x^(2))-1)/(x))

If y=(tan^(-1))(sqrt(1+x^(2))-1)/(x), then y'(1) is equal to

Find (dy)/(dx) if y=tan^(-1)((sqrt(1+x^(2)-1))/(x)), where x!=0

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) , then find (dy)/(dx) when -1lexle1.

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

If y="tan"^(-1)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) , then the value of (dy)/(dx) is -

If y=tan^(-1)(((sqrt(1+x^(2))-sqrt(1-x^(2)))/((sqrt(1+x^(2))+sqrt(1-x^(2)))) find (dy)/(dx)

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=