Home
Class 12
MATHS
sin^(-1)((1)/(sqrt(5)))+cot^(-1)x=(pi)/(...

sin^(-1)((1)/(sqrt(5)))+cot^(-1)x=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: sin^(-1)((1)/(sqrt(5)))+cot^(-1)3=(pi)/(4)

sin ^(-1) "" (1)/(sqrt(5))+cot ^(-1) 3= (pi)/(4)

sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(10)))=(pi)/(4)

Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

cot (sin ^(-1)""(1)/(sqrt(5))+sin ^(-1)""(2)/(sqrt(5)))

cot((sin^(-1)1)/(sqrt(5))+(sin^(-4)2)/(sqrt(5)))