Home
Class 11
MATHS
(d^n)/(dx^n)(logx)= (a)((n-1)!)/(x^n)...

`(d^n)/(dx^n)(logx)=` (a)`((n-1)!)/(x^n)` (b) `(n !)/(x^n)` (c)`((n-2)!)/(x^n)` (d) `(-1)^(n-1)((n-1)!)/(x^n)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(x^(n)(1+x^(n))^((1)/(n)))

If tan x=n tan y,n in R^(+), then the maximum value of sec^(2)(x-y) is equal to (a) ((n+1)^(2))/(2n) (b) ((n+1)^(2))/(n)( c) ((n+1)^(2))/(2) (d) ((n+1)^(2))/(4n)

(b) int(x^(n-1)dx)/(sqrt(a^n+x^n))

The coefficient of 1/x in the expansion of (1+x)^(n)(1+1/x)^(n) is (n!)/((n-1)!(n+1)!) b.((2n)!)/((n-1)!(n+1)!) c.((2n-1)!(2n+1)!)/((2n-1)!(2n+1)!) d.none of these

Let S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n , then

16.Prove that (x^(n))/(n)!+(x^(n-1)*a)/((n-1)!1!)+(x^(n-2)*a^(2))/((n-2)!2!)......+(a^(n))/(n!)=((x+a)^(n))/(n!)

Find the sum (x+2)^(n-1)+(x+2)^(n-2)(x+1)^(+)(x+2)^(n-3)(x+1)^(2)++(x+1)^(n)(x+2)^(n-2)-(x+1)^(n) b.(x+2)^(n-2)-(x+1)^(n-1) c.(x+2)^(n)-(x+1)^(n) d.none of these

If int(dx)/(x^(2)(x^(n)+1)^((n-1)/(n)))=-(f(x))^((1)/(n))+C then f(x) is (A)1+x^(n)(B)1+x^(-n)(C)x^(n)+x^(-n)(D)x^(n)-x^(-n)

If y=ax^(n+1)+bx^(-n), then x^(2)(d^(2)y)/(dx^(2))=n(n-1)y(b)n(n+1)y(c)ny(d)n^(2)y

Divide x^(2n)+a^(2^(n-1))x^(2^(n-1))+a^(2^(n))byx^(2^(n-1))-a^(2^(n-2))x^(2^(n-2))+a^(2^(n-1))