Home
Class 12
MATHS
Let M > 0 and L = lim(x->0) (M(1-4sqrt(M...

Let `M > 0` and `L = lim_(x->0) (M(1-4sqrt(M^2-x^2)))/(x^2 sqrt(M^2-x^2))` exists and is a finite non-zero number. Then `LM` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let kgt0 and lambda =lim_(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^2)) be finite. Then the value of lambdak , is

Let kgt0 and lambda =lim_(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^2)) be finite. Then the value of lambdak , is

lim_(x rarr0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

Let L=lim_(xto0) (a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),agt0 . If L is finite, then

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x^(2))-sqrt(1-x^(2))) equals

lim_(x rarr0)(3sqrt(1+x^(2))-4sqrt(1-2x))/(x+x^(2)) is equal to

Let L=lim_(xrarr0)(b-sqrt(b^(2)+x^(2))-(x^(2))/(4))/(x^(4)), b gt 0 . If L is finite, then