Home
Class 11
MATHS
" (i) "^(5)=p+iq," then prove that "(y+i...

" (i) "^(5)=p+iq," then prove that "(y+ix)^(3)=q+ip

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+iy)^(5)=p+iq, then prove that (y+ix)^(5)=q+ip

If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

If x^(p)y^(q)=(x+y)^(p+q) , then prove that (dy)/(dx)=(y)/(x) .

If x^p y^q= (x+y)^(p+q) , then prove that dy/dx = y/x