Home
Class 11
MATHS
For xgeq0 , the smallest value of the fu...

For `xgeq0` , the smallest value of the function `f(x)=(4x^2+8x+13)/(6(1+x)),` is

Promotional Banner

Similar Questions

Explore conceptually related problems

For xge 0 , the smallest value of the function f(x)=(4x^2+8x+13)/(6(1+x)) , is ________.

For x ge 0 , the smallest value of funcation f(x) = (4x^(2) + 8x + 13)/(6(1 + x)) is

The smallest value of the function f(x)=3|x+1|+|x|+3|x-1|+2|x-3|

The maximum value of the function f(x)= x^(2)+2x^(2)-4x+6 exits at

The function f(x)=2+4x^(2)+6x^(4)+8x^(6) has

The value of c in the Lagrange's mean value theorem for the function f(x)=x^(3)-4x^(2)+8x+11 , when x in [0, 1] is :

Find the greatest and least values of function f(x)=3x^(4)-8x^(3)-18x^(2)+1

If the greatest and least values of the function f(x)=x^(3)-6x^(2)+9x+1 on [0,2] are K and P ,then find the value of K^(4)+P^(8) .