Home
Class 10
MATHS
" (ii) "(1-x)(1+x+x^(2))...

" (ii) "(1-x)(1+x+x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

In the expansion of (1 + x) (1 + x+ x^(2)) …(1 + x + x^(2) +… +x^(2n)) , the sum of the coefficients is

In the expansion of (1 + x) (1 + x+ x^(2)) …(1 + x + x^(2) +… +x^(2n)) , the sum of the coefficients is

The term independent of x in the expansion of ((1)/(x^(2)) + (1)/(x) +1 + x + x^(2))^(5) , is

The term independent of x in the expansion of ((1)/(x^(2)) + (1)/(x) +1 + x + x^(2))^(5) , is

lim_(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)), n in N , equals

lim_(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)), ninN," equals"

If x_(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x_(2) = sin^(-1) ((1 - x^(2))/(1 + x^(2))), " where " x in (0, 1) , then x_(1) + x_(2) is equal to

For x>0 the sum of the series (1)/(1+x)-(1-x)/((1+x)^(2))+((1-x)^(2))/((1+x)^(3))-...oo is equal to

lim_(x rarr1)((1-x)(1-x^(2))............(1-x^(2n)))/({(1-x)(1-x^(2)).........(1-x^(n))}^(2))