Home
Class 11
MATHS
If a >0, then least value of (a^3+a^2+a...

If `a >0,` then least value of `(a^3+a^2+a+1)^2` is (a)`64 a^2` (b)`16 a^4` (c)`16 a^3` (d)d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of prod_(k=0)^6 sin\ ((2k+1)pi)/14= (A) 1/16 (B) 1/64 (C) 1/32 (D) none of these

If x lies in the interval [0,1], then the least value of x^(2)+x+1 is (a) 3/4(c)1 (d) none of these

The value of tan[cos^(-1)((4)/(5))+tan^(-1)((2)/(3))] is (6)/(17) (b) (7)/(16) (c) (16)/(7) (d) none of these

The value of sqrt((0.16)/(0.4)) is (a) 0.02(b)0.2(c)0.63 (d) None of these

Let |x2xx^2x6xx6|=a x^4+b x^3+c x^2+dx+edot Then, the value of 5a+4b+3c+2d+e is equal 0 (b) -16 (c) 16 (d) none of these

(1.6xx3.2)/(0.08)=?( a) 0.8(b)6.4(c)8(d)64(d) None of these

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

The least value of the expression x^(2)+4y^(2)+3z^(2)-2x-12y-6z+14 is a.1 b.no least value c.0 d.none of these