Home
Class 11
MATHS
" 34.If "A=[[1,1],[1,1]]," prove that "A...

" 34.If "A=[[1,1],[1,1]]," prove that "A^(n)=[[2^(n-1),2^(n-1)],[2^(n-1),2^(n-1)]]," for all positive integers "n

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(1,1),(1,1)] , prove by induction that A^n = [(2^(n-1), 2^(n-1)), (2^(n-1), 2^(n-1))] for all natural numbers n.

If A=[[3,-4],[1,-1]] , then prove that A^n=[[1+2n,-4n],[n,1-2n]] , where n is any positive integer.

If A=[(a, b),(0, 1)] , prove that A^n=[(a^n,b((a^n-1)/(a-1))),(0 ,1)] for every positive integer n .

If A=[(3,-4),(1,-1)] , then prove that A^(n)=[(1+2n,-4n),(n,1-2n)] , where n is any positive integer.

If A,=[[3,-41,1]], then prove that A^(n),=[[1+2n,-4n][2n], where n is any positive integer.

If A=[{:(3,-4),(1,-1):}] , then prove that A^(n)=[{:(1+2n,-4n),(n,1-2n):}] where n is any positive integer .

if A=[[3, -4],[ 1, (-1)]] , then prove that A^n=[[1+2 n, -4 n ],[n , 1-2n]] where n is any positive integer.

If [[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all positive integers ndot

if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .

if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .