Home
Class 12
MATHS
If A+B+C = 2S then sin(S - A) sin(S-B) ...

If `A+B+C = 2S` then `sin(S - A) sin(S-B) +sinS sin(S - C)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = 2S then sin (SA) sin (SB) + sin S sin (SC) =

If A + B + C = 2S then sin (SA) + sin (SB) + sin (SC) -sin S =

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

If A+B +C =2S, prove that : sin (S - A) + sin (S- B) + sin (S-C)-sinS= 4 sin frac (A)(2) sin frac (B)(2) sin frac (C)(2) .

A+B + C = 2S implies sin S + sin (S -A) + sin (S - B) - sin (S - C) =

A + B + C = 2S rArr sin S + sin (SA) + sin (SB) -sin (SC) =

If A+B+C=2S , prove that: sin(S-A)+sin(S-B)+sin(S-C)-sinS = 4sinA/2sinB/2sinC/2

If A+B+C = 2S , then prove that sin(S-A)+sin(S-B)+sinC = 4 cos ((S-A)/2) cos ((S-B)/2) sin C/2 .

If A + B + C = 2S, then prove that sin (SA) + sin (SB) + sin C = 4cos ((Sa) / (2)) cos ((sb) / (2)) sin ((c) / (2))