Home
Class 12
MATHS
1 + (1)/(4) + (1.3)/(4.8) + (1.3.5)/...

` 1 + (1)/(4) + (1.3)/(4.8) + (1.3.5)/(4.8.12) + `… is equal to

A

`sqrt2`

B

`(1)/(sqrt2) `

C

`sqrt3 `

D

`(1)/(sqrt3)`

Text Solution

Verified by Experts

The correct Answer is:
A

` 1 + (1)/(4) + (1.3)/(4.8) + (1.3.5)/(4.8.12) + … `
` (1 + x ) ^n = 1 + nx + (n (n- 1 ))/(2!) x^ 2 `
` + (n(n - 1 )(n - 2 ))/(3!) x ^ 3 + … `
On comparing the above expansion, we get,
` therefore nx = (1)/(4) " "`...(1)
` (n(n - 1 ))/(2!) x ^ 2 = (1.3)/(4.8) " "`...(2)
` (n (n - 1 )(n -2))/(3!) x ^ 3 = (1.3.5 ) /(4.8.12)" " `...(3)
(2) `div` (1)
`((n-1))/(2) x = (3)/(2xx 4 ) `
` (n - 1 ) x = (3)/(4) " " `...(4)
From (3) ` div ` (2)
` ((n-2))/(3) x = (5)/(3) xx (1)/(4) " " `...(5)
From (4) and (5) , ` x = ( - 1 ) /(2) , n = ( - 1 ) /(2) `
` therefore 1 + (1)/(4) + (1.3)/(4.8) + (1.3.5 )/(4.8.12) + ... = (1 - (1)/(2) ) ^( -1/2) `
` = ((1)/(2))^( -1/2) = sqrt2 `
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    SIA PUBLICATION|Exercise PROBLEMS|59 Videos
  • CIRCLE

    SIA PUBLICATION|Exercise PROBLEMS|50 Videos

Similar Questions

Explore conceptually related problems

1+(1)/(4)+(1.4)/(4.8)+(1.4.7)/(4.8.12)+….=

Show that + 1/4 + (1.3)/(4.8) + (1.3.5)/(4.8.12) + …….= sqrt2

Knowledge Check

  • 1 + 1/4 + (1.3)/(4.8) + (1.3.5)/(4.8.12) + ….." to " oo=

    A
    `sqrt2`
    B
    `(1)/(sqrt2)`
    C
    `sqrt3`
    D
    `(1)/(sqrt3)`
  • The sum of the series (3)/(4.8) - (3.5)/(4.8.12) + (3.5.7)/(4.8.12.16) - … is equal to

    A
    `sqrt((3)/(2)) - (3)/(4) `
    B
    `sqrt((2)/(3)) - (3)/(4) `
    C
    `sqrt((3)/(2)) -(1)/(4) `
    D
    `sqrt((2)/(3)) - (1)/(4) `
  • Match the following. {:("I." 1+(1)/(3) + (1.3)/(3.6) + (1.3.5)/(3.6.9) +…....=, "a)" sqrt2),("II." 1+ (1)/(4) + (1.3)/(4.8) + (1.3. 5) /(4.8.12)=, "b)" 2 sqrt2),( "III." 1+(2)/(6) + (2.5)/(6.12) + (2.5.8)/(6.12.18)+…...=, "c)" sqrt3),( "IV." 1+(3)/(4) + (3.5)/(4.8) + (3.5.7)/(4.8.12)+........=, "d)" root(3)(4)):}

    A
    a, b, c, d
    B
    d, c, b, a
    C
    a, c, d, b
    D
    c, a, d, c
  • Similar Questions

    Explore conceptually related problems

    1-(3)/(4)+(3.5)/(4.8)-(3.5.7)/(4.8.12)+….=

    1 + 2/4 + (2.5)/(4.8) + (2.5.8)/(4.8.12) + ….. =

    1-(1)/(8)+(1.3)/(8.16)-(1.3.5)/(8.16.24)+…..=

    (3)/(4.8)+(3.5)/(4.8.12)+(3.5.7)/(4.8.12.16)+….=

    1 + (2)/(4) + (2.5)/(4.8) + (2.5.8)/(4.8.12) + (2.5.8.11)/(4.8.12.16) + … is equal to