Home
Class 12
MATHS
"Sech"^(-1)(1/2) - "Cosech"^(-1) (3/4) =...

`"Sech"^(-1)(1/2) - "Cosech"^(-1) (3/4) =`

A

`log_(e)(3(2+sqrt(3)))`

B

`log_(e) ((1+sqrt(3))/3)`

C

`log_(e)((2+sqrt(3))/3)`

D

`log_(e)((2-sqrt(3))/3)`

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND MATHEMATICAL INDUCTION

    SIA PUBLICATION|Exercise Problems|58 Videos
  • INDEFINITE INTEGRATION

    SIA PUBLICATION|Exercise PROBLEMS|50 Videos

Similar Questions

Explore conceptually related problems

"Cosech"^(-1)((1)/(5))=

If A = "Tanh"^(-1) (1//2) + "Coth"^(-1) (2), "B = sinh "("Cosh"^(-1)9) . "C = sech"^(2) ("Tanh"^(-1) 1//2)+ "cosech"^2 ("Coth"^(-1) 3) then

"Sech"^(-1)((1)/(3))=

Sech ""^(-1) (1//5) =

Ascending order of (A) "Sinh"^(-1) (B) "Cosh"^(-1) (1) (C ) "Tanh"^(-1) 1/2 (D) "Sech"^(-1) 1/2

The value of the expression "sech"^2 ("Tanh"^(-1) (1//2))+"Cosech"^2 ("Coth"^(-1) 3) is

sech^(2)("tan"h^(-1)1/2)+cosech^(2)(coth^(-1)3)=