Home
Class 12
MATHS
int(f(x)g'(x)-f'(x)g(x))/(f(x)g(x)) [ lo...

`int(f(x)g'(x)-f'(x)g(x))/(f(x)g(x)) [ log (g(x))-log(f(x))]dx=`

A

`log(g(x))/(f(x))+c`

B

`1/2[log(g(x))/(f(x))]^(2) +c`

C

`(g(x))/(f(x)) log(g(x))/(f(x)) +c`

D

`log|(g(x))/(f(x))|-(g(x))/(f(x))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLIC FUNCTIONS

    SIA PUBLICATION|Exercise Problems|16 Videos
  • LIMITS AND CONTINUITY

    SIA PUBLICATION|Exercise Problems|46 Videos

Similar Questions

Explore conceptually related problems

int (f'(x))/(f(x)log f(x))dx=

The derivative of (log x) ^(x) w.r.t x is (log x)^(x-1) [1+ log x log (log x)] R : (d)/(dx) {f (x) ^(g(x))[g (x) (f'(x))/(f (x)) + g'(x) log (f(x) ]

Given f(x)=log_(10)x and g(x)=e^(piix) , if theta(x)=|(f(x)g(x),[ f(x)]^(g(x)),1),(f(x^(2))g(x^(2)),[f(x^(2))]^(g(x^(2))),0),(f(x^(3))g(x^(3)),[f(x^(3))]^(g(x^(3))),1)| , then the value of theta(10) is

Let f(a)=g(a)=k and the their nth derivatives f^(n)(a),g^(n)(a) exixst and are not equal for some n. further if lim_(x to a)(f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4 then the value of k is

int_(ln lambda)^(ln(1/lambda))(f(x^(2)/3)(f(x)+f(-x)))/(g(3x^(2))(g(x)-g(-x)))dx=

int_(-(pi)/(2))^((pi)/(2)) (f(x) + f(-x))(g(x) - g(-x)) dx where f(x) and g(x) are continuous functions on [-(pi)/(2), (pi)/(2)]

phi(x) = f(x)g(x) and f'(x)g'(x) = k , then (2k)/(f(x)g(x)) =

If f(x)=log(x-5)(2-x), g(x)=log(x-5), h(x)=log(2-x) then