Home
Class 12
MATHS
For any integer n ge 2, let I(n) = int t...

For any integer `n ge 2`, let `I_(n) = int tan^(n) xdx`. If `I_(n) =1/a tan^(n-1)x - bI_(n-2)` for `n ge 2`, then the ordered pair (a,b) equals to

A

`(n-1, (n-1)/(n-2))`

B

`(n-1, (n-2)/(n-1))`

C

(n,1)

D

(n-1,1)

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLIC FUNCTIONS

    SIA PUBLICATION|Exercise Problems|16 Videos
  • LIMITS AND CONTINUITY

    SIA PUBLICATION|Exercise Problems|46 Videos

Similar Questions

Explore conceptually related problems

For any integer n le 2 let I_(n)= int x dx . If I_(n)=(1)/(a)tan^(n-1)x-bl_(a-2) for n ge 2 , then ordered pair (a,b) =

If I_(n) = int Cot^(n) xdx then I_(4) + I_(6) =

If I_(n) = int tan^(n) " x dx then " I_(0) + 2I_(2) + I_(4) =

For n ge 2 , If I_(n) =int sec^(n) xdx," then "I_(4) -(2)/(3) I_(2) =

If I_(n) = int sin^(n)x dx , then nI_(n)-(n-1)I_(n-2)=

If I_(n) = int x^(n) e^(-x) dx prove that I_(n) = -x^(n) e^(-x) + nI_(n-1)

If I_(n) = int (sin nx)/(sin x)dx where n gt 1 , then I_(n)-I_(n-2)