Home
Class 12
MATHS
int tan^(-1) (sqrt((1-x)/(1+x)))dx is eq...

`int tan^(-1) (sqrt((1-x)/(1+x)))`dx is equal to

A

`1/2(x cos^(-1)x-sqrt(1-x^(2))+c)`

B

`1/2(x cos^(-1)x+sqrt(1-x^(2))+c)`

C

`1/2(xsin^(-1)x-sqrt(1-x^(2))+c)`

D

`1/2(x sin^(-1)x + sqrt(1-x^(2))+c)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLIC FUNCTIONS

    SIA PUBLICATION|Exercise Problems|16 Videos
  • LIMITS AND CONTINUITY

    SIA PUBLICATION|Exercise Problems|46 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)sqrt((1-x)/(1+x))dx=

int (Sin^(-1) x)/(sqrt(1-x^(2)))dx=

Evaluate int tan^(-1) sqrt((1-x)/(1+x)) dx, on (-1,1 )

If 2 int_(0)^(1) tan^(-1) x dx = int_(0)^(1) cot^(-1) (1- x+x^(2))dx , then int_(0)^(1) tan^(-1) (1-x+x^(2))dx is equal to

int (sin^(-1) sqrt(x))/(sqrt(1 -x)) dx =

int (x+Sin^(-1)x)/(sqrt(1-x^(2)))=dx