Home
Class 12
MATHS
If int(sinx)/(cosx(1+cosx))dx = f(x)+c, ...

If `int(sinx)/(cosx(1+cosx))dx = f(x)`+c, then f(x) is equal to

A

`|(1-cosx)/(cosx)|`

B

`log|(cosx)/(1+cosx)|`

C

`|(sinx)/(1+sinx)|`

D

`log|(1+sinx)/(sinx)|`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLIC FUNCTIONS

    SIA PUBLICATION|Exercise Problems|16 Videos
  • LIMITS AND CONTINUITY

    SIA PUBLICATION|Exercise Problems|46 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/((1+cosx)^(2))dx

int (sinx)/(cos x(1+ cos x))dx= f(x)+ c rArr f(x)=

int(sinx)/(sinx-cosx)dx=

int (sin^(2)x)/(1+cosx)dx=

int (x+sinx)/(1+cosx)dx =

int(cosx+xsinx)/(x(x+cosx))dx

int (x - "sinx")/(1 -cosx) dx =