Home
Class 12
MATHS
If int sin^(-1)(2x)/(1+x^(2))dx = f(x) -...

If `int sin^(-1)(2x)/(1+x^(2))dx = f(x) - log(1+x^(2))+c`, then f(x) is equal to

A

`2x tan^(-1)x`

B

`-2x tan^(-1)x`

C

`x tan^(-1)x`

D

`-x tan^(-1)x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLIC FUNCTIONS

    SIA PUBLICATION|Exercise Problems|16 Videos
  • LIMITS AND CONTINUITY

    SIA PUBLICATION|Exercise Problems|46 Videos

Similar Questions

Explore conceptually related problems

int Sin^(-1)((2x)/(1+x^(2)))dx=f(x)-log (1+x^(2))+c rArr f(x)=

int e^(x)( log x+(1)/(x^(2)))dx=

If f(x)=sin^(-1)(sqrt(3)/2x-1/2sqrt(1-x^(2))), -1/2 le x le 1 , then f(x) is equal to