Home
Class 12
MATHS
int(dx)/(1-cosx-sinx) is equal to...

`int(dx)/(1-cosx-sinx)` is equal to

A

`log|1+cot (x/2)|+c`

B

`log|1-tan (x/2)|+c`

C

`log|1-cot(x/2)|+c`

D

`log|1+tan(x/2)|+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLIC FUNCTIONS

    SIA PUBLICATION|Exercise Problems|16 Videos
  • LIMITS AND CONTINUITY

    SIA PUBLICATION|Exercise Problems|46 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(cosx-sinx)=

int(1)/(1-cosx)dx

int(cosx)/(cosx-sinx)dx=

int(dx)/(7+5 cosx) is equal to

tan^(-1)[(cosx)/(1+sinx)] is equal to

The integral int_((pi)/(4))^((3pi)/(4))(dx)/(1+cosx) is equal to

int (x)/(1+cosx)dx=

int(cosx)/(cosx+sin x)dx=

int(tanx)/(1+cosx)dx=

int(1)/(sinx-cosx)dx