Home
Class 12
MATHS
int(3^(x)dx)/sqrt(9^(x)-1) is equal to...

`int(3^(x)dx)/sqrt(9^(x)-1)` is equal to

A

`1/(log 3) log |3^(x) + sqrt(9^(x)-1)|+c`

B

`1/(log3)log|3^(x) - sqrt(9^(x)-1)|+c`

C

`1/(log9) log|3^(x)-sqrt(9^(x)-1)|+c`

D

`1/(log3) log|9^(x)+sqrt(9^(x)-1)|+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLIC FUNCTIONS

    SIA PUBLICATION|Exercise Problems|16 Videos
  • LIMITS AND CONTINUITY

    SIA PUBLICATION|Exercise Problems|46 Videos

Similar Questions

Explore conceptually related problems

int (dx)/(sqrt(x) (x+9))) is equal to

int (3^x)/(sqrt(9^x - 1) ) dx =

int (3^(x))/(sqrt(25 -9^(x))) dx =

int (3^(x))/(sqrt(16 + 9^(x))) dx =

int_(0)^(1)(dx)/(x+sqrt(x))=

int (x)/(sqrt(x^(2)+1))dx=