Home
Class 11
MATHS
" 12."sin^(2)A+sin^(2)B-sin^(2)C=2sin A ...

" 12."sin^(2)A+sin^(2)B-sin^(2)C=2sin A sin B cos C

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C

If quad A+B-C=180^(@) and sin^(2)A+sin^(2)B-sin^(2)C=K sin A sin B cos C, then the value of K is

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If A+B+C= 180^(@) , prove that: (i) "sin"^(2)+"sin"^(2)B-"sin"^(2)C=2 "sin"A sin B cos C (ii) "sin"^(2)A-"sin"^(2)B+"sin"^(2) C=2 sin Acos B sin C.

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B-sin^2 C=2 sin A sin B cos C .

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

If A+B+C= (pi)/(2) ,prove that: (i) cos^(2)A+cos^(2)B+cos^(2)C=2+2"sin"A "sin"B "sin"C (ii) "sin"^(2)+"sin"^(2)B+"sin"^(2)C=1-2 "sin"A sin B sin C .

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .