Home
Class 11
MATHS
If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(d...

If `y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx)` is (a)`(n y)/(sqrt(x^2+a^2))` (b) `-(n y)/(sqrt(x^2+a^2))` (c)`(n x)/(sqrt(x^2+a^2))` (d) `-(n x)/(sqrt(x^2+a^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=[x+sqrt(x^(2)+a^(2))]^(n) then prove that (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))

If y={x+sqrt(x^(2)+a^(2))}^(n), then prove that (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))

Ify={x+sqrt(x^(2)+a^(2))}^(n), provethat (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))+a

If y={x+sqrt(x^(2)+a^(2))}^(n), then prove that (dy)/(dx)=(ny)/(sqrt((x^(2)+a^(2))))

If y=log(sqrt(x+sqrt(x^(2)+a^(2))))" then: "(dy)/(dx)=

if y=sqrt(x^(2)+a^(2)), then show that y(dy)/(dx)=x

y= (a^2+x^2)/(sqrt(a^2-x^2)) then dy/dx=

int(dx)/(x sqrt(x^(2n)-a^(2n)))

If y =sqrt(a^(2) + sqrt( a^(2)+ x^(2)) ),then (dy)/(dx) =