Home
Class 12
MATHS
If x e ^(xy ) = y + sin ^(2)x, then at x...

If `x e ^(xy ) = y + sin ^(2)x,` then `at x =0 (dy)/(dx) =`

A

1

B

2

C

`1/2`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|112 Videos
  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|114 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET -2|3 Videos

Similar Questions

Explore conceptually related problems

y = x ^(sin x) + (sin x)^x then (dy)/(dx) =

If y= sin x +e^(x) then (d^2x)/(dy^2) =

If x -y = Sin ^(-1) x - Sin ^(-1) y then (dy)/(dx) =

If e^(x+y) =xy then (dy)/(dx) =

If y = x^(2) e^(x) sin x , then find (dy)/(dx)

If x ^(y) = e ^(x -y) then (dy)/(dx) =

If y sin x=x + y then (dy)/(dx) at x =0 is

Find the derivatives of the function If x = log (1 + sin ^(2)y ) show that (dy)/(dx) = (e ^(x))/( sin 2y).

If y = e ^(x + e ^(x + e^(x ...oo))), then (dy)/(dx)=

If 2x^(2) - 3xy + y^(2) + x + 2y - 8 = 0 , then (dy)/(dx) is equal to