Home
Class 12
MATHS
(d)/(dx) {log ((x )/(e ^(tanx)))}=...

`(d)/(dx) {log ((x )/(e ^(tanx)))}=`

A

`1/x sin ^(2)x`

B

`1/x -sec ^(2)x`

C

`1/x -cot ^(2) x`

D

`1/x tan ^(2) x`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|114 Videos
  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|3 Videos
  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise SET-4|6 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET -2|3 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx) {log ((x ^(2))/(e ^(x)))}=

(d)/(dx ) log (x + sqrt(x ^(2) +1 ))}=

(d)/(dx ) { a log ((a+ sqrt(a ^(2)- x ^(2)))/(x)) - sqrt(a ^(2) - x ^(2)) }=

(d)/(dx) {tan (log Tan^(-1) sqrtx)}=

d/(dx){x^(tanx)} =

(d)/(dx){log(x+sqrt(a^2+x^2))} =

The derivative of (log x) ^(x) w.r.t x is (log x)^(x-1) [1+ log x log (log x)] R : (d)/(dx) {f (x) ^(g(x))[g (x) (f'(x))/(f (x)) + g'(x) log (f(x) ]

(d)/(dx) { log ((sqrt(x+1) -1)/(sqrt(x + 1 ) +1 )) + ( sqrtx)/(sqrt( x +1))}=