Home
Class 12
MATHS
(d)/(dx) {e ^(ax)sin (bx+c)}=...

`(d)/(dx) {e ^(ax)sin (bx+c)}=`

A

`e ^(ax) [a sin (bx +c) +b cos (bx+c)]`

B

`e ^(ax) [ a cos (bx + c ) + b sin (bx +c]`

C

`e ^(nx) [ a sin (bx +c) -b cos (bx +c)]`

D

`e ^(nx) [ a cos (bx + c )- b sin (bx +c)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|114 Videos
  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|3 Videos
  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise SET-4|6 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET -2|3 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx) {Sec^(-1) e ^(x) }=

(d)/(dx) F(x) = (e^(sin x))/(x) , x gt 0 . If int_(1)^(4) (2e^(sin x^(2)))/(x) dx=F(K)-F(1) , then one of the possible values of K is :

Let (d)/(dx) f(x) = (e^(sin x))/(x) , x gt 0 . If int_(1)^(4) 3/x e^(sin(x^(3)))dx=F(k)-F(1) then one of the possible value of k is

for x^(2) - 4 ne 0 , the value of (d)/(dx)[log{e^(x) ((x - 2)/(x+2))^(3//4)}]at x = 3 is

(d)/(dx) {log ((x ^(2))/(e ^(x)))}=

(d)/(dx) {log ((x )/(e ^(tanx)))}=

Match the following {:(,"List-I",,"List-II",),((1),"The equation of family of curves for which",(a),y+e^(-x) = " c, y " - e^(x) = c,),(,"length of the normal = The radius vector.",,,),((2),"Solution of the differential equation " ((dy)/(dx))^(2) - (dy)/(dx)(e^(x)+e^(-x))+1=0 " is",(b),y = x cot (x+c),),((3),"The solution of " (xdy)/((x^(2)+y^(2))) = ((y)/(x^(2)+y^(2))-1)dx " is",(c),y^(2)+- x^(2) = k^(2),),(,,(d),e^(y)=e^(x)-1,):}