Home
Class 12
MATHS
If |x| lt 1 then (d)/(dx) (1+2x+ 3x ^(2)...

If` |x| lt 1` then `(d)/(dx) (1+2x+ 3x ^(2) +…)=`

A

`(1)/((1-x )^(2))`

B

`(2)/((1-x )^(3))`

C

`(-2)/((1-x )^(3))`

D

`(1)/((1-x)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|114 Videos
  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|3 Videos
  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise SET-4|6 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET -2|3 Videos

Similar Questions

Explore conceptually related problems

If |x| lt 1 then (d)/(dx ) [1+ (px)/(q) + (p (p+q))/(2 !)((x)/(q))^(2) + (p(p+q) (p+ 2q))/(3!) ((x )/(q))+...]=

(d)/(dx) { x ^(1//x)}=

(d)/(dx) {Sec^(-1) e ^(x) }=

(d)/(dx) {(1)/(sqrt(3x +2))}=

(d)/(dx ) log (x + sqrt(x ^(2) +1 ))}=

(d)/(dx){(x +(1)/(x) )^(3)}=

(d)/(dx)[cos ^(-1)(4x^(3) - 3x)]=

(d)/(dx) {Sin ^(-1) (3x -4 x ^(3))}=

(d)/(dx) {x ^(n) + (1)/(x ^(n))}=

(d)/(dx) {Tan ^(-1) ""(2x)/(1- x ^(2))}=