Home
Class 12
MATHS
y = Sin ^(-1) x implies ( 1- x ^(2)) (d ...

`y = Sin ^(-1) x implies ( 1- x ^(2)) (d ^(2) y)/(dx ^(2)) =`

A

`-x (dy )/(dx)`

B

`0`

C

`x (dy)/(dx)`

D

`((dy)/(dx)) ^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise SET-2|4 Videos
  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise SET-3|5 Videos
  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET -2|3 Videos

Similar Questions

Explore conceptually related problems

x = cos theta, y = sin 5 theta implies (1- x ^(2)) (d^(2)y)/(dx ^(2)) -x (dy)/(dx) =

y = sin (m Sin ^(-1)x ) implies ( 1- x ^(2)) y _(2) - xy _(1) =

If x = Sin ^(-1) t, y = sqrt(1- t ^(2)) then (d^(2) y)/(dx ^(2))=

If y = sin (log _(e) x) then (x ^(2) (d ^(2) y)/(dx ^(2)) +x (dy )/(dx)=

If y =Sin ^(-1) (2x sqrt (1- x ^(2))), find (dy)/(dx).

Cos^(-1) ((y)/(b)) =2 log "" ((x)/(2)) , x gt 0 implies x ^(2) (a ^(2) y)/(dx ^(2)) + x (dy )/(dx) =

If y = Sin ^(-1) (1 - x ^(2))/(1+ x ^(2)) then (dy)/(dX)=

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

If y = sin (7 Sin ^(-1) x) then (1-x ^(2)) y _(2) - xy _(1)=