Home
Class 12
MATHS
y = sin (m Sin ^(-1)x ) implies ( 1- x ^...

`y = sin (m Sin ^(-1)x ) implies ( 1- x ^(2)) y _(2) - xy _(1) =`

A

`m^(2) y`

B

`-m^(2)y`

C

`2m^(2)y`

D

`-2m^(2)y`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise SET-2|4 Videos
  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise SET-3|5 Videos
  • DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET -2|3 Videos

Similar Questions

Explore conceptually related problems

If y = sin (7 Sin ^(-1) x) then (1-x ^(2)) y _(2) - xy _(1)=

y = Sin ^(-1) x implies ( 1- x ^(2)) (d ^(2) y)/(dx ^(2)) =

If y = e ^(Sin^(-1)x ) then (1 - x ^(2)) y _(2) - xy_(1) -y=

If y = (sin ^(-1) x ) ^(2) then show that (1- x ^(2)) y _(2) - xy_(1) = 2.

If y = sin(m sin^(-1)x) , then (1-x^(2))y_(2) - xy_(1) is equal to (Here, y_(n) denotes (d^(n)y)/(dx^(n)) )

If y =e ^( m Cos ^(-1)x) then show that (1- x^(2)) y _(2) - xy_(1) -m^(2) y =0.

If y = e^(sin^ [-1] x), then (1 - x^(2))y_(2) - xy_(1) =

If y=((sin^(-1)x)^(2))/(2) , then (1-x^(2))y_(2)-xy_(1)=

If y = (x+ sqrt(x ^(2) -1))^(m) then (x ^(2) -1) y_(2) + xy _(1)=

If y =a cos (log x) + b sin (log x) then x ^(2) y _(2) + xy _(1)+y=