A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
DIFFERENTIATION
DIPTI PUBLICATION ( AP EAMET)|Exercise SET-2|4 VideosDIFFERENTIATION
DIPTI PUBLICATION ( AP EAMET)|Exercise SET-3|5 VideosDIFFERENTIATION
DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|3 VideosDIFFERENTIAL EQUATIONS
DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 VideosDIRECTION COSINES AND DIRECTION RATIOS
DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET -2|3 Videos
Similar Questions
Explore conceptually related problems
DIPTI PUBLICATION ( AP EAMET)-DIFFERENTIATION -EXERCISE 1D
- If y = ae ^(nx) + be ^(-nx) then y (2)=
Text Solution
|
- If y = e ^(-kx //2) (a cos nx + b sin nx) then y (2)+ky(1)+ (n^(2) + k...
Text Solution
|
- If y =a cos (sin x) + b sin (sin x) then y (2) + (tan x) y(1)=
Text Solution
|
- f (x) = 10 cos x + (13 + 2x) sin x implies f''(x) + f(x) =
Text Solution
|
- If ay ^(4) = (x+ b) ^(5) then 5 y y(2)=
Text Solution
|
- If ax ^(2) + by ^(2) =c, then y (2) =
Text Solution
|
- If x ^(2) + xy + y ^(2) = a ^(2), then y (2) =
Text Solution
|
- If x ^(3) + y ^(3) = 3axy then y (2) =
Text Solution
|
- If y ^(2) = (x-a)(x-b)then ( d ^(3))/(dx ^(3)) [((d ^(2) y)/(dx ^(2))^...
Text Solution
|
- If x ^(3) + y^(3) = 3ax ^(2) then y (2)=
Text Solution
|
- If y ^(2) = a ^(2) cos ^(2) x + b b^(2) sin ^(2) x then y + y (2)=
Text Solution
|
- If ax ^(2) + 2hxy + by ^(2) =1 then (hx + by) ^(3) y (2) =
Text Solution
|
- If x ^(3) - 3ax ^(2) + y ^(3) =0then y ^(5) y (2) =
Text Solution
|
- If x ^(2) + y ^(2) =a ^(2) then ((1+ y (1) ^(2))^(3//2))/(|y(2)|)=
Text Solution
|
- If y ^(2) = 4ax then 4a^2 (1+ y(1) ^(2)) ^(3//2) + (y ^(2) + 4a ^(2))...
Text Solution
|
- If x ^(2) + 5xy + y^(2) =-2x + y -6=0 then y'' at (1,1) is
Text Solution
|
- If sqrtx+ sqrty = sqrta then y (2)+ (1+ y(1)) ^(3) y =
Text Solution
|
- If y = sin (x + y) then y (2) + (1+ y (1)) ^(3) y =
Text Solution
|
- If x ^(2) - xy + y ^(2) =1 and y ''(1)=
Text Solution
|
- If x ^(2) - 2x ^(2) y ^(2) + 5x + y-5 =0 and y (1) then y '' (1)=
Text Solution
|