Home
Class 12
MATHS
(1)/(n!) +(1)/((n+1)!)+(1)/((n+2)!)=...

`(1)/(n!) +(1)/((n+1)!)+(1)/((n+2)!)=`

A

`(n^2 +n+11)/((n-1)!)`

B

`(n^2 +4n +5 )/((n+2)!)`

C

`(n^2+6n+3)/( (n+1)!)`

D

none

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS & COMBINATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B (COMBINATIONS )|222 Videos
  • PERMUTATIONS & COMBINATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 ( SPECIAL TYPE QUESTIONS ) SET -1|9 Videos
  • PERMUTATIONS & COMBINATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 ( SPECIAL TYPE QUESTIONS ) SET -4|10 Videos
  • PARTIAL FRACTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|2 Videos
  • PROBABILITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET-4|5 Videos

Similar Questions

Explore conceptually related problems

Prove that (1)/(1!(n-1)!) + (1)/(3!(n-3)!)+ (1)/(5!(n-5)!) + …….= (2^(n-1))/(n!)

Evaluate Lt_(n rarr oo) ((1)/(n+1) + (1)/(n+2) +..+(1)/(3n))

If (1)/(n+1)+(1)/(2(n+1)^(2))+(1)/(3(n+1)^(3))+….= lambda((1)/(n)-(1)/(2n^(2))+(1)/(3n^(3))-……) then lambda=

Lt_(n rarr oo)[(1)/(n+1) + (1)/(n+2)+..(1)/(2n)]

If n is a positive integer, prove that 1-2n +(2n(2n-1))/(2!) - (2n(2n-1) (2n-2))/(3!) +… + (-1)^(n-1) (2n(2n-1) …(n+2))/((n-1)!) = (-1)^(n+1) ((2n)!)/(2(n!)^(2))

Lt_(n rarr oo)[(1)/(3n+1) + (1)/(3n+2)+…+(1)/(4n)]

Let P(n) : 1+ (1)/(4) + (1)/(9) + …. + (1)/(n^2) lt 2 - (1)/( n) is true for

Lt_(ntooo){(1)/(n+1)+(1)/(n+2)+......+(1)/(2n)}=