Home
Class 12
MATHS
1+(2)/(1!)+(4)/(2!)+(8)/(3!)+....=...

`1+(2)/(1!)+(4)/(2!)+(8)/(3!)+....=`

A

e

B

`e^(2)`

C

`e^(3)`

D

`1//e`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

I : (2)/(1!)+(4)/(3!)+(6)/(5!)+....=e-1 II : (3)/(2!)+(5)/(4!)+(7)/(6!)+(9)/(8!)+....=e-1

Show that 1 + 2/3.1/2 + (2.5)/(3.6) (1/2)^2 + (2.5.8)/(3.6.9) (1/2)^3 + ….. = root(3)4

If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce then the descending order of a,b,c is

(1)/(2)+(3)/(2).(1)/(4)+(5)/(3).(1)/(8)+(7)/(4).(1)/(16)+....=

Write the following in descending order: (1)/(4), (1)/(2), (1)/(8), (3)/(4)