Home
Class 12
MATHS
1-(3)/(1!)+(9)/(2!)-(27)/(3!)+....=...

`1-(3)/(1!)+(9)/(2!)-(27)/(3!)+....=`

A

e

B

`e^(2)`

C

`e^(3)`

D

`e^(-3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

If the sum of the series 1+ (3)/(x) + (9)/(x^(2))+ (27)/(x^(3)) + …oo is a finite number, then

If (1)/(1!9!)+(1)/(3!7!)+(1)/(5!5!)+(1)/(7!3!)+(1)/(9!1!)=(2^n)/(10!) , then n=

(1)/(3)-(1)/(2).(1)/(9)+(1)/(3).(1)/(27)-(1)/(4).(1)/(81)+….oo=

1+(1)/(2). (3)/(5) + (1.3)/(2.4) . (9)/(25)+(1.3.5)/(2.4.6).(27)/(125)+…...oo=

(1)/(2) + (1)/(4) + (1)/(8) + (1)/(16) + ….. = x , (1)/(3) + (1)/(9) + (1)/(27) + (1)/(81) + … = y, then

If 'omega' is a complex cube root of unity, then omega^(((1)/(3)+(2)/(9)+(4)/(27)+...oo))+omega^(((1)/(2)+(3)/(8)+(9)/(32)+...oo))=