Home
Class 12
MATHS
1+2(log(e)a)+(2^(2))/(2!)(log(e)a)^(2)+(...

`1+2(log_(e)a)+(2^(2))/(2!)(log_(e)a)^(2)+(2^(3))/(3!)(log_(e)a)^(3)+....=`

A

e

B

a

C

`a^(2)`

D

`e^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

1+x(log_(e)2)+(x^(2))/(2!)(log_(e)2)^(2)+(x^(3))/(3!)(log_(e)2)^(3)+....=

A : log_(e)3+((log_(e)3)^(2))/(2!)+((log_(e)3)^(3))/(3!)+....=2 R : If x,ainRandagt0" then "a^(x)=1+xlog_(e)a+(x^(2))/(2!)(log_(e)a)^(2)+(x^(3))/(3!)(log_(e)a)^(3)+....

xlog_(e)a+(x^(3))/(3!)(log_(e)a)^(3)+(x^(5))/(5!)(log_(e)a)^(5)+...=

log_(e)2=

2[1+((log_(e)a)^(2))/(2!)+((log_(e)a)^(4))/(4!)+....] =

log_(e)3+((log_(e)3)^(2))/(2!)+((log_(e)3)^(3))/(3!)+....=

log_(e)2+((log_(e)2)^2)/(2!)+((log_(e)2)^(3))/(3!)+....=