Home
Class 12
MATHS
1+x(log(e)2)+(x^(2))/(2!)(log(e)2)^(2)+(...

`1+x(log_(e)2)+(x^(2))/(2!)(log_(e)2)^(2)+(x^(3))/(3!)(log_(e)2)^(3)+....=`

A

`e^(2)`

B

`x^(2)`

C

`e^(x)`

D

`2^(x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

1+2(log_(e)a)+(2^(2))/(2!)(log_(e)a)^(2)+(2^(3))/(3!)(log_(e)a)^(3)+....=

A : log_(e)3+((log_(e)3)^(2))/(2!)+((log_(e)3)^(3))/(3!)+....=2 R : If x,ainRandagt0" then "a^(x)=1+xlog_(e)a+(x^(2))/(2!)(log_(e)a)^(2)+(x^(3))/(3!)(log_(e)a)^(3)+....

xlog_(e)a+(x^(3))/(3!)(log_(e)a)^(3)+(x^(5))/(5!)(log_(e)a)^(5)+...=

log_(e)2+((log_(e)2)^2)/(2!)+((log_(e)2)^(3))/(3!)+....=

log_(e)3+((log_(e)3)^(2))/(2!)+((log_(e)3)^(3))/(3!)+....=

2[1+((log_(e)a)^(2))/(2!)+((log_(e)a)^(4))/(4!)+....] =

If x,y,z are three consecutive positive integers then (1)/(2)log_(e)x+(1)/(2)log_(e)z+(1)/(2xz+1)+(1)/(3)((1)/(2xz+1))^(3)+....=